История микроскопа: как человечество объявило войну бактериям - Yaboltushka.ru

История микроскопа: как человечество объявило войну бактериям

История микроскопа

Кто изобрел первый микроскоп? На самом деле ответ на этот вопрос не такой уж и простой, так как еще римские философы упоминали некие «увеличительные очки» в своих трудах, по сути, прообраз микроскопа. Тем не менее, первый примитивный микроскоп не был создан до конца 1300-х годов. Первый микроскоп представлял собой две линзы, размещенные на противоположных концах трубки, фактически это еще не был микроскоп в современном понимании этого слова, а скорее большая увеличительная лупа. Но именно она стала предтечей появления настоящего микроскопа.

Шлифовка стекла для очков и увеличительных стекол была обычным явлением в XIII веке. В конце XVI века несколько голландских производителей линз разработали устройства для увеличения объектов, которое в 1609 году усовершенствовал Галилео Галилей. Великий итальянский ученый представил публике первое устройство, известное как микроскоп.

Голландские производители очков Ханс Ясен и его сын Захарий Ясен были отмечены как первые люди, разработавшие концепцию составного микроскопа. Поместив линзы разных типов и размеров в противоположные концы трубок, они обнаружили, что маленькие объекты были значительно увеличены.

Улучшение объектива

Позже, в XVI веке, голландец Антонии ван Левенгук начал полировать и шлифовать линзы, когда обнаружил, что линзы определенной формы увеличивают размер изображения.

Созданные им стеклянные линзы могли многократно увеличивать объект. Качество его линз позволило ему, впервые в истории, увидеть множество микроскопических животных, бактерий и сложных деталей общих объектов.

Леувенгук считается основоположником изучения микроскопии и играет важную роль в развитии теории клеток.

Ахроматическая линза

Микроскоп использовался более 100 лет, прежде чем было разработано значительное улучшение к нему – ахроматическая линза.

Использовать ранние микроскопы было сложно. Свет преломлялся при прохождении через линзы и изменял внешний вид изображения.

Когда в 1729 году Честер Мур Холл разработал ахроматическую линзу для использования в очках, качество микроскопов улучшилось.

Используя эти специальные линзы, многие люди продолжали улучшать остроту зрения микроскопа.

Механические улучшения

В течение XVIII и XIX веков произошло много изменений как в дизайне корпуса, так и в качестве микроскопов.

Микроскопы стали стабильнее и меньше. Улучшения объектива решило многие оптические проблемы, которые были распространены в более ранних версиях.

С этого момента история микроскопа расширяется и расширяется благодаря тому, что люди со всего мира одновременно работали над подобными усовершенствованиями и технологиями линз.

Августу Колеру приписывают создание способа обеспечения равномерного освещения микроскопа, позволяющего фотографировать образцы.

Эрнст Лейтц изобрел способ, позволяющий использовать различные микроскопы для увеличения с помощью одного объектива, поместив несколько линз на подвижную револьверную головку на конце трубки объектива.

В поисках способа, позволяющего видеть больше цветов светового спектра, Эрнст Аббе разработал микроскоп, который через несколько лет предоставил инструменты для разработки ультрафиолетового микроскопа.

Современная технология улучшающей микроскопии

Изобретение микроскопа позволило ученым изучать микроскопические существа в окружающем их мире.

При изучении истории микроскопа важно понимать, что до тех пор, пока эти микроскопические существа не были обнаружены, причины многих болезней хотя и теоретизировались, но все еще оставались загадкой.

Микроскоп позволил людям выйти из мира, контролируемого невидимыми вещами, в мир, где возбудители и вирусы, вызывавшие болезни, были видны, названы и, со временем, предотвращены.

Чарльз Спенсер продемонстрировал, что свет влияет на то, как изображения видны. Потребовалось более ста лет, чтобы разработать микроскоп, работающий без света.

Первый электронный микроскоп был разработан в 1930-х годах Максом Ноллом и Эрнстом Руском.

Электронные микроскопы позволяют получать изображения мельчайших частиц, но их нельзя использовать для изучения живых существ. Его увеличение и разрешение не имеют аналогов в световом микроскопе. Однако для изучения живых образцов вам понадобится стандартный микроскоп.

Сканирующая зондовая микроскопия позволяет просматривать образцы на атомном уровне, который начался со сканирующего туннельного микроскопа, изобретенного в 1981 году Гердом Беннигом и Генрихом Рорером.

Позже Бенниг и его коллеги в 1986 году изобрели атомно-силовой микроскоп, открывший настоящую эру нано исследований. И уже в самом конце ХХ века, с развитием компьютерных технологий появились первые цифровые микроскопы.

История микроскопа насчитывает несколько веков, однако первый дизайн Левенгука остался неизменным с 1600-х годов.

История создания микроскопа и его устройство

Содержание:

Что ни говорите, а микроскоп является одним из важнейших инструментов ученых, одним из главных их оружий в познании окружающего мира. Как появился первый микроскоп, какая история микроскопа от средних веков и до наших дней, какое строение микроскопа и правила работы с ним, ответы на все эти вопросы Вы найдете в нашей статье. Итак, приступим.

История создания

Хотя первые увеличительные линзы, на основе которых собственно и работает световой микроскоп, археологи находили еще при раскопках древнего Вавилона, тем не менее, первые микроскопы появились в Средневековье. Что интересно, среди историков нет согласия по поводу того, кто первым изобрел микроскоп. Среди кандидатов на эту почтенную роль такие известные ученые и изобретатели как Галилео Галилей, Христиан Гюйгенс, Роберт Гук и Антонии ван Левенгук.

Стоит также упомянуть итальянского врача Г. Фракосторо, который еще в далеком 1538 году первым предложил совместить несколько линз, чтобы получить больший увеличительный эффект. Это еще не было созданием микроскопа, но стало предтечей его возникновения.

А в 1590 году некто Ханс Ясен, голландский мастер по созданию очков заявил, что его сын – Захарий Ясен – изобрел первый микроскоп, для людей Средневековья такое изобретение было сродни маленькому чуду. Однако, ряд историков сомневается в том, является ли Захарий Ясен истинным изобретателем микроскопа. Дело в том, что в его биографии немало темных пятен, в том числе пятен и на его репутации, так современники обвиняли Захарию в фальшивомонетчестве и краже чужой интеллектуальной собственности. Как бы там ни было, но точно узнать был ли Захарий Ясен изобретателем микроскопа или нет, мы, к сожалению, не можем.

А вот репутация Галилео Галилея в этом плане безупречна. Этого человека мы знаем, прежде всего, как, великого астронома, ученого, гонимого католической церковью за свои убеждения о том, что Земля вращается вокруг Солнца, а не наоборот. Среди важных изобретений Галилея – первый телескоп, с помощью которого ученый проник своим взором в космические сферы. Но сфера его интересов не ограничивалась лишь звездами и планетами, ведь микроскоп, это по сути тот же телескоп, но только наоборот. И если с помощью увеличительных линз можно наблюдать за далекими планетами, то почему бы не обратить их мощь в другое направление – изучить то, что находится у нас «под носом». «Почему бы и нет», – наверное, подумал Галилей, и вот, в 1609 году он уже представляет широкой публике в Академии деи Личеи свой первый составной микроскоп, который состоял из выпуклой и вогнутой увеличительных линз.

Позднее, спустя 10 лет, голландский изобретатель Корнелиус Дреббель усовершенствовал микроскоп Галилея, добавив в него еще одну выпуклую линзу. Но настоящую революцию в развитии микроскопов совершил Христиан Гюйгенс, голландский физик, механик и астроном. Так он первым создал микроскоп с двухлинзовой системой окуляров, которые регулировались ахроматически. Стоит заметить, что окуляры Гюйгенса применяются и по сей день.

А вот знаменитый английский изобретатель и ученый Роберт Гук навеки вошел в историю науки, не только как создатель собственного оригинального микроскопа, но и как человек, сделавший при его помощи великое научное открытие. Именно он первым увидел через микроскоп органическую клетку, и предположил, что все живые организмы состоят из клеток, этих мельчайших единиц живой материи. Результаты своих наблюдений Роберт Гук опубликовал в своем фундаментальном труде – Микрографии.

Опубликованная в 1665 году Лондонским королевским обществом, эта книга тут же стала научным бестселером тех времен и произвела подлинный фурор в научном сообществе. Еще бы, ведь в ней имелись гравюры с изображением увеличенной в микроскоп блохи, вши, мухи, комара, клетки растения. По сути, этот труд представлял собой удивительное описание возможностей микроскопа.

Интересный факт: термин «клетка» Роберт Гук взял потому, что клетки растений ограниченные стенами напомнили ему монашеские кельи.

Так выглядел микроскоп Робета Гука, изображение из «Микрографии».

И последним выдающимся ученым, который внес свой вклад в развитие микроскопов, был голландец Антонии ван Левенгук. Вдохновленный трудом Роберта Гука, «Микрографией», Левенгук создал свой собственный микроскоп. Микроскоп Левенгука, хотя и обладал лишь одной линзой, но она была чрезвычайно сильной, таким образом, уровень детализации и увеличения у его микроскопа был лучшим на то время. Наблюдая в микроскоп живую природу, Левенгук сделал множество важнейших научных открытий в биологии: он первым увидел эритроциты, описал бактерии, дрожжи, зарисовал сперматозоиды и строение глаз насекомых, открыл инфузории и описал многие их формы. Работы Левенгука дали огромный толчок к развитию биологии, и помогли привлечь внимание биологов к микроскопу, сделали его неотъемлемой частью биологических исследований, аж по сей день. Такая в общих чертах история открытия микроскопа.

Виды микроскопов

Далее с развитием науки и техники стали появляться все более совершенные световые микроскопы, на смену первому световому микроскопу, работающему на основе увеличительных линз, пришел микроскоп электронный, а затем и микроскоп лазерный, микроскоп рентгеновский, дающие в разы более лучший увеличительный эффект и детализацию. Как же работают эти микроскопы? Об этом дальше.

Электронный микроскоп

История развития электронного микроскопа началась в 1931 году, когда некто Р. Руденберг получил патент на первый просвечивающий электронный микроскоп. Затем в 40-х годах прошлого века появились растровые электронные микроскопы, достигшие своего технического совершенства уже в 60-е годы прошлого века. Они формировали изображение объекта благодаря последовательному перемещению электронного зонда малого сечения по объекту.

Читайте также  Что такое электронная сигарета

Как работает электронный микроскоп? В основе его работы лежит направленный пучок электронов, ускоренный в электрическом поле и выводящий изображение на специальные магнитные линзы, этот электронный пучок намного меньше длины волн видимого света. Все это дает возможность увеличить мощность электронного микроскопа и его разрешающую способность в 1000-10 000 раз по сравнению с традиционным световым микроскопом. Это главное преимущество электронного микроскопа.

Так выглядит современный электронный микроскоп.

Лазерный микроскоп

Лазерный микроскоп представляет собой усовершенствованную версию электронного микроскопа, в основе его работы лежит лазерный пучок, позволяющий взору ученого наблюдать живые ткани на еще большой глубине.

Рентгеновский микроскоп

Рентгеновские микроскопы используются для исследования очень маленьких объектов, имеющих размеры сопоставимые с размерами рентгеновской волны. В основе их работы лежит электромагнитное излучение с длиной волны от 0,01 до 1 нанометра.

Устройство микроскопа

Конструкция микроскопа зависит от его вида, разумеется, электронный микроскоп будет отличаться своим устройством от светового оптического микроскопа или от рентгеновского микроскопа. В нашей статье мы рассмотрим строение обычного современного оптического микроскопа, который является наиболее популярным как среди любителей, так и профессионалов, так как с их помощью можно решить множество простых исследовательских задач.

Итак, прежде всего в микроскопе можно выделить оптическую и механическую части. К оптической части относится:

  • Окуляр – это та часть микроскопа, которая прямо связана с глазами наблюдателя. В самых первых микроскопах он состоял из одной линзы, конструкция окуляра в современных микроскопах, разумеется, несколько сложнее.
  • Объектив – практически самая важная часть микроскопа, так как именно объектив обеспечивает основное увеличение.
  • Осветитель – отвечает за поток света на исследуемый объект.
  • Диафрагма – регулирует силу светового потока, поступающего на исследуемый объект.

Механическая часть микроскопа состоит из таких важных деталей как:

  • Тубус, он представляет собой трубку, в которой заключается окуляр. Тубус должен быть прочным и не деформироваться, так как иначе пострадают оптические свойства микроскопа.
  • Основание, оно обеспечивает устойчивость микроскопа во время работы. Именно на него крепится тубус, держатель конденсатора, ручки фокусировки и другие детали микроскопа.
  • Револьверная головка – применяется для быстрой смены объективов, в дешевых моделях микроскопов отсутствует.
  • Предметный столик – это то место, на котором размещается исследованный объект или объекты.

А тут на картинке изображено более подробное строение микроскопа.

Презентация по биологии на тему: «История микроскопа. Бактерии»

Описание презентации по отдельным слайдам:

Проверка домашнего задания!

1665 г – Роберт Гук открыл клетку Рассматривая через увеличительный прибор тонкий срез коры пробкового дуба, заметил большое количество ячеек. Эти ячейки он назвал клетками. Позднее установили, что клетки пробки мертвые и Р. Гук видел только их оболочки. В живых растительных клетках под оболочкой содержится вязкое вещество — цитоплазма, а в нем находятся более плотное ядро, вакуоли — пузырьки с клеточным соком и др.

Проводящая ткань растений, по клеткам которой осуществляется передвижение органических веществ, состоит из 1) волокон 2) клеток с волосками 3) сосудов 4) ситовидных трубок

Волокно как особый вид механической ткани сильно развито в стебле 1) льна-долгунца 2) кукурузы 3) томата 4) тюльпана

Прочность и упругость организму растения обеспечивает 1) проводящая ткань 2) образовательная ткань 3) основная ткань 4) механическая ткань

К основной ткани в цветковом растении относят 1) кожицу 2) фотосинтезирующую ткань 3) образовательную ткань 4) пробку

Срез арбуза при рассматривании в ручную лупу Клетки мякоти арбуза под микроскопом

Имеются сведения, что первый прибор типа микроскопа был создан в Нидерландах З. Янсеном около 1590 года.

В 1675 году голландец Антони ван Левенгук усовершенствовал микроскоп. Рассматривая с его помощью капли воды, взятой из бочки, которая долго стояла на дворе, он обнаружил мельчайших животных. Они были настолько мелки, что могли свободно проходить через ушко тонкой швейной иглы.

Обычно, микроскопы комплектуются тремя объективами (8х — объектив малого увеличения, 40х — объектив большого увеличения, 90х — иммерсионный объектив). В соответствии с этим на объективе имеется маркировка 8, 40 или 90. На окулярах также имеется маркировка, указывающая кратность их увеличения. Чаще всего используют окуляры с увеличением 7, 10 и 15 раз. Общее увеличение микроскопа = окуляр х объектив Например, при работе с окуляром 10х и объективом 8х происходит увеличение линейных размеров объекта в 80 раз (8 х 10 = 80).

Ядро нет ДНК свернутый в кольцо нуклеойд Жгутик есть Клеточная стенка есть, запасное питательное вещество — муреин Размножение Бесполое: просто напополам (бинарное) или почкованием; спорообразование (для переживания неблагоприятных условий) Половое У бактерий, нет, конечно, мужских и женских клеток. «Половое» — означает обмен генетической информацией. Метаболизм Брожение — анаэробный (бесктслородный) процесс диссимиляции Дыхание — бактерии вместо кислорода используют кислородсодержащие органические и минеральные вещества (хемосинтез) Фотосинтез бескислородный — зеленые и пурпурные бактерии используютбактериохлорофилл; Фотосинтез кислородный — цианобактериииспользуют хлорофилл. Отношения с другими организмами паразитические (патогенные) симбиотические индиффирентые

2. извитая форма — спириллы

3. вибрионы — несколько клеток объединяются, вытянувшись в цепочку Холерный вибрион

4. форма грозди — стафилококки

4. Палочковидные (бациллы) — кишечные бактерии Кишечная палочка помогает в расщеплении клетчатки в организме человека, чрезмерное количество вызывает дифтерию

Для переживания неблагоприятных условий бактерии образуют споры!!

Почему цианобактерии это прокариоты: отсутствие ядра, митохондрий, хлоропластов; наличие в клеточной стенке муреина; молекулы S-рибосом в составе клетки.

Строение цианобактерий: клеточная стенка из полисахаридов и муреина; плазматическая мембрана билипидного строения; цитоплазма со свободно распределенным генетическим материалом в виде молекулы ДНК; тиллакоиды, выполняющие функцию фотосинтеза и содержащие пигменты (хлорофиллы, ксантофиллы, каротиноиды).

Сходство жиз­не­де­я­тель­но­сти цианобактерий и цвет­ко­вых растений про­яв­ля­ет­ся в спо­соб­но­сти к 1) образованию семян 2) автотрофному питанию 3) двойному оплодотворению 4) гетеротрофному питанию

Некоторые бактерии выживают в условиях вечной мерзлоты в виде 1) спор 2) вегетативных клеток 3) симбиоза с грибами 4) множественных колоний

Чем спора отличается от свободной бактерии? 1) Спора — многоклеточное образование, а свободная бактерия — одноклеточное. 2) Спора менее долговечна, чем свободная бактерия. 3) Спора питается автотрофно, а свободная бактерия — гетеротрофно. 4) Спора имеет более плотную оболочку, чем свободная бактерия.

Возбудители дифтерии являются 1) автотрофами 2) сапротрофами 3) паразитами 4) симбионтами

Какой из приёмов борь­бы с бо­лез­не­твор­ны­ми бактериями наи­бо­лее эффективен в опе­ра­ци­он­ном блоке? 1) пастеризация 2) ре­гу­ляр­ное проветривание 3) об­лу­че­ние ультрафиолетовыми лучами 4) мытье полов го­ря­чей водой

Какой из приёмов борь­бы с бо­лез­не­твор­ны­ми бактериями наи­бо­лее эффективен в опе­ра­ци­он­ном блоке? 1) пастеризация 2) ре­гу­ляр­ное проветривание 3) об­лу­че­ние ультрафиолетовыми лучами 4) мытье полов го­ря­чей водой

Укажите случай симбиоза бактерии с другим организмом. 1) бацилла сибирской язвы и овца 2) вибрион холеры и человека 3) кишечная палочка и человек 4) сальмонелла и курица

Какие бактерии считают «санитарами планеты»? 1) молочнокислые 2) гниения 3) уксуснокислые 4) клубеньковые Бактерии гниения — благодаря их жизнедеятельности происходит разложение и минерализация органических веществ отмерших растений и животных. Образовавшиеся при этом простые неорганические соединения (аммиак, сероводород, углекислый газ и др.) вовлекаются в общий круговорот веществ, без которого была бы невозможна жизнь на Земле.

По способу питания молочнокислые бактерии относят к 1) бактериям-сапротрофам 2) бактериям-паразитам 3) фотосинтезирующим бактериям 4) автотрофным бактериям Сапротрофы — гетеротрофные организмы, использующие для питания органические соединения мёртвых тел или выделения (экскременты) животных.

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

Курс профессиональной переподготовки

Биология: теория и методика преподавания в образовательной организации

Курс повышения квалификации

Современные педтехнологии в деятельности учителя

Онлайн-конференция для учителей, репетиторов и родителей

Формирование математических способностей у детей с разными образовательными потребностями с помощью ментальной арифметики и других современных методик

Международная дистанционная олимпиада Осень 2021

  • Все материалы
  • Статьи
  • Научные работы
  • Видеоуроки
  • Презентации
  • Конспекты
  • Тесты
  • Рабочие программы
  • Другие методич. материалы

  • Лопатина Светлана СергеевнаНаписать 2392 14.03.2018

Номер материала: ДБ-1320301

  • Биология
  • Презентации
    14.03.2018 268
    14.03.2018 134
    14.03.2018 2766
    14.03.2018 230
    14.03.2018 699
    14.03.2018 355
    14.03.2018 175
    14.03.2018 944

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Минпросвещения не планирует массово закрывать школы из-за коронавируса

Время чтения: 1 минута

В пяти регионах России протестируют новую систему оплаты труда педагогов

Время чтения: 2 минуты

В России предложили ввести бесплатное второе высшее образование по IT-специальностям

Время чтения: 2 минуты

Минпросвещения разработало меморандум по воспитательной работе в школах

Время чтения: 2 минуты

Все призеры конкурса «Учитель года России» станут советниками министра просвещения

Время чтения: 1 минута

Екатерина Костылева из Тюменской области стала учителем года России – 2021

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

История создания микроскопа.

История создания микроскопа

Хотя первые увеличительные линзы, на основе которых собственно и работает световой микроскоп, археологи находили еще при раскопках древнего Вавилона, тем не менее, первые микроскопы появились в Средневековье. Что интересно, среди историков нет согласия по поводу того, кто первым изобрел микроскоп. Среди кандидатов на эту почтенную роль такие известные ученые и изобретатели как Галилео Галилей, Христиан Гюйгенс, Роберт Гук и Антонии ван Левенгук.

Читайте также  Косметические процедуры омоложения кожи

Стоит также упомянуть итальянского врача Г. Фракосторо, который еще в далеком 1538 году первым предложил совместить несколько линз, чтобы получить больший увеличительный эффект. Это еще не было созданием микроскопа, но стало предтечей его возникновения.

А в 1590 году некто Ханс Ясен, голландский мастер по созданию очков заявил, что его сын – Захарий Ясен – изобрел первый микроскоп, для людей Средневековья такое изобретение было сродни маленькому чуду. Однако, ряд историков сомневается в том, является ли Захарий Ясен истинным изобретателем микроскопа. Дело в том, что в его биографии немало темных пятен, в том числе пятен и на его репутации, так современники обвиняли Захарию в фальшивомонетчестве и краже чужой интеллектуальной собственности.

Изобретатель: Захариус Йансен
Страна: Голландия
Время изобретения: 1595 г.

Сегодня трудно представить себе научную деятельность человека без микроскопа. Микроскоп широко применяется в большинстве лабораторий медицины и биологии, геологии и материаловедения.

Полученные с помощью микроскопа результаты необходимы при постановке точного диагноза, при контроле над ходом лечения. С использованием микроскопа происходит разработка и внедрение новых препаратов, делаются научные открытия.

Микроскоп (от греческого mikros — малый и skopeo — смотрю) — оптический прибор для получения увеличенного изображения мелких объектов и их деталей, не видимых невооруженным глазом.

Глаз человека способен различать детали объекта, отстоящие друг от друга не менее чем на 0,08 мм. С помощью светового микроскопа можно видеть детали, расстояние между которыми составляет до 0,2 мкм. Электронный микроскоп позволяет получить разрешение до 0,1-0,01 нм.

Изобретение микроскопа, столь важного для всей науки прибора обусловлено, прежде всего, влиянием развития оптики. Некоторые оптические свойства изогнутых поверхностей были известны еще Евклиду (300 лет до н.э.) и Птоломею (127-151 гг.), однако их увеличительная способность не нашла практического применения. В связи с этим первые очки были изобретены Сальвинио дели Арлеати в Италии только в 1285 г. В 16 веке Леонардо да Винчи и Мауролико показали, что малые объекты лучше изучать с помощью лупы.

Первый микроскоп был создан лишь в 1595 году Захариусом Йансеном (Z. Jansen). Изобретение заключалось в том, что Захариус Йансен смонтировал две выпуклые линзы внутри одной трубки, тем самым, заложив основы

для создания сложных микроскопов. Фокусировка на исследуемом

объекте достигалось за счет выдвижного тубуса. Увеличение микроскопа составляло от 3 до 10 крат. И это был настоящий прорыв в области микроскопии! Каждый свой следующий микроскоп он значительно совершенствовал.

В этот период (XVI в.) датские, английские и итальянские исследовательские приборы постепенно начали свое развитие, закладывая фундамент современной микроскопии.

Быстрое распространение и совершенствование микроскопов началось после того, как Галилей (G. Galilei), совершенствуя сконструированную им зрительную трубу, стал использовать ее как своеобразный микроскоп (1609—1610), изменяя расстояние между объективом и окуляром.

Позднее, в 1624 г., добившись изготовления более короткофокусных линз, Галилей значительно уменьшил габариты своего микроскопа.

В 1625 г. членом Римской «Академии зорких» («Akudemia dei lincei») И. Фабером был предложен термин «микроскоп». Первые успехи, связанные с применением микроскопа в научных биологических исследованиях, были достигнуты Гуком (R. Hooke), который первым описал растительную клетку (около 1665 г.). В своей книге «Micrographia» Гук описал устройство микроскопа.

В 1681 г. Лондонское королевское общество на своем заседании подробно обсуждало своеобразное положение. Голландец Левенгук (A. van Leenwenhoek) описывал изумительные чудеса, которые открывал своим микроскопом в капле воды, в настое перца, в иле реки, в дупле собственного зуба. Левенгук с помощью микроскопа обнаружил и зарисовал сперматозоиды различных простейших, детали строения костной ткани (1673—1677). Он писал:»С величайшим изумлением я увидел в капле великое множество зверюшек, оживленно двигающихся во всех направлениях, как щука в воде. Самое мелкое из этих крошечных животных в тысячу раз меньше глаза взрослой вши.»

Открывался новый мир живых существ, более разнообразный и бесконечно более оригинальный, чем видимый нами мир.

В 1668 г. Е. Дивини, присоединив к окуляру полевую линзу, создал окуляр современного типа. В 1673 г. Гавелий ввел микрометрический винт, а Гертель предложил под столик микроскопа поместить зеркало. Таким образом, микроскоп стали монтировать из тех основных деталей, которые входят в состав современного биологического микроскопа.

В середине 17 столетия Ньютон открыл сложный состав белого света и разложил его призмой. Рёмер доказал, что свет распространяется с конечной скоростью, и измерил ее. Ньютон высказал знаменитую гипотезу — неверную, как вам известно,- о том, что свет есть поток летящих частиц такой необычайной мелкости и частоты, что они проникают через прозрачные тела, как стекло через хрусталик глаза, и, поражая ретину ударами, производят физиологическое ощущение света. Гюйгенс впервые заговорил о волнообразной природе света и доказал, как естественно она объясняет и законы простого отражения и преломления, и законы двойного лучепреломления в исландском шпате. Мысли Гюйгенса и Ньютона встретились в резком контрасте. Таким образом, в XVII в. в остром споре действительно встала проблема о сущности света.

Как разгадка вопроса сущности света, так и усовершенствование микроскопа подвигались вперед медленно. Спор между идеями Ньютона и Гюйгенса продолжался целое столетие. К представлению о волновой природе света примкнул знаменитый Эйлер. Но решен был вопрос лишь через сто с лишним лет Френелем талантливым исследователем, какого знала наука.

Чем отличается поток распространяющихся волн — идея Гюйгенса — от потока несущихся мелких частиц — идея Ньютона? Двумя признаками:

1. Встретившись, волны могут взаимно уничтожиться, если горб одной ляжет на долину другой. Свет + свет, сложившись вместе, могут дать темноту. Это явление интерференции, это кольца Ньютона, непонятые самим Ньютоном; с потоками частиц этого быть не может. Два потока частиц — это всегда двойной поток, двойной свет.

2. Через отверстие поток частиц проходит прямо, не расходясь в стороны, а поток волн непременно расходится, рассеивается. Это дифракция.

Френель доказал теоретически, что расхождение во все стороны ничтожно, если волна мала, но все же и эту ничтожную дифракцию он обнаружил и измерил, а по ее величине определил длину волны света. Из явлений интерференции, которые так хорошо известны оптикам, полирующим до «одного цвета», до «двух полос», он также измерил длину волны — это полмикрона (половина тысячной доли миллиметра). И отсюда стали неоспоримыми волновая теория и исключительная тонкость и острота проникновения в сущность живого вещества. С тех пор все мы в разных модификациях подтверждаем и применяем мысли Френеля. Но и не зная этих мыслей, можно усовершенствовать микроскоп.

Так это и было в XVIII столетии, хотя события развивались очень медленно. Сейчас трудно даже представить себе, что первая труба Галилея, в которую он наблюдал мир Юпитера, и микроскоп Левенгука были простыми неахроматическими линзами.

Огромным препятствием в деле ахроматизации было отсутствие хорошего флинта. Как известно, ахроматизация требует двух стекол: крона и флинта. Последний представляет стекло, в котором одной из основных частей является тяжелая окись свинца, обладающая непропорционально большой дисперсией.

В 1824 г. громадный успех микроскопа дала простая практическая идея Саллига, воспроизведенная французской фирмой Шевалье. Объектив, раньше состоявший из одной линзы, расчленен на части, его начали изготовлять из многих ахроматических линз. Так умножено число параметров, дана возможность исправления ошибок системы, и стало впервые возможным говорить о настоящих больших увеличениях — в 500 и даже 1000 раз. Граница предельного видения передвинулась от двух к одному микрону. Далеко позади оставлен микроскоп Левенгука.

В 70-х годах 19 века победоносное шествие микроскопии связано с именем немецкого физика-оптика и астронома Эрнста Карла Аббе (Ernst Karl Abbe).

Достигнуто было следующее:

Во-первых, предельное разрешение передвинулось от полумикрона до одной десятой микрона.

Во-вторых, в построении микроскопа вместо грубой эмпирики введена высокая научность.

В-третьих, наконец, показаны пределы возможного с микроскопом, и эти пределы завоеваны.

Сформирован штаб ученых, оптиков и вычислителей, работающих при фирме Цейсса. В капитальных сочинениях учениками Аббе дана теория микроскопа и вообще оптических приборов. Выработана система измерений, определяющих качество микроскопа.

Когда выяснилось, что существующие сорта стекол не могут удовлетворить научным требованиям, планомерно созданы были новые сорта. Вне тайн наследников Гинана — Пара-Мантуа (наследники Бонтана) в Париже и Ченсов в Бирмингаме — созданы были вновь методы плавки стекла, и дело практической оптики развито до такой степени, что можно сказать: Аббе оптическим снаряжением армии почти выиграл мировую войну 1914-1918 гг.

Наконец, призвав на помощь основы волновой теории света, Аббе впервые ясно показал, что каждой остроте инструмента соответствует свой предел возможности. Тончайший же из всех инструментов — это длина волны. Нельзя видеть объекты меньше полудлины волны — утверждает дифракционная теория Аббе,- и нельзя получить изображения меньше полудлины волны, т.е. меньше 1/4 микрона. Или с разными ухищрениями иммерсии, когда мы применяем среды, в которых длина волны меньше,- до 0,1 микрона. Волна лимитирует нас. Правда, лимиты очень мелкие, но все же это лимиты для деятельности человека.

Физик-оптик чувствует, когда на пути световой волны вставлен объект толщиной в тысячную, в десятитысячную, в отдельных случаях даже в одну стотысячную длину волны. Сама длина волны измерена физиками с точностью до одной десятимиллионной своей величины. Можно ли думать, что оптики, соединившие свои усилия с цитологами, не овладеют той сотой длины волны, которая стоит в поставленной ими задаче? Найдутся десятки способов обойти предел, поставленный длиной волны.

Читайте также  Секс в жизни мужчины и женщины

Вам известен один из таких обходов, так называемый метод ультрамикроскопии. Если невидимые в микроскоп микробы расставлены далеко друг от друга, то можно осветить их сбоку ярким светом. Как бы они малы ни были, они заблестят, как звезда на темном фоне. Форму их нельзя определить, можно лишь констатировать их присутствие, но и это часто чрезвычайно важно. Этим методом широко пользуется бактериология.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Микроскоп

Кроме видимого окружающего мира, существует мир невидимый, таинственный, микроскопический. Сотни и даже тысячи лет человек шел по пути открытия прибора, который позволил заглянуть ему в сокровенные глубины природы — туда, где все начинается, складывается, подобно мозаичным узорам, из мельчайших деталей в удивительные картины бытия и проявляется многообразием форм и структур.

Таким прибором оказался микроскоп. Поначалу совсем простой, изготовленный из подручных материалов увлеченными учеными и любознательными людьми-экспериментаторами, микроскоп стал тем инструментом познания, благодаря которому человечество совершило рывок на пути к величайшим открытиям. Микроскоп показал людям, что существует еще невидимый, такой же насыщенный и многообразный, мир микроорганизмов: грибов, растений и беспозвоночных.

Микроскоп изменил представление о строении всего живого, люди узнали о клетках и вирусах. С годами интерес к этому удивительному изобретению лишь возрастал. В нем были заинтересованы уже не только ученые, но и врачи, ювелиры, детективы, работники различных промышленных предприятий и санитарных служб.

Благодаря стремительному развитию техники микроскопы постоянно совершенствуются, дополняются новыми приспособлениями, находят применение в разных областях.

В наше время этот замечательный прибор стал доступен любому человеку, который желает изучить микромир. Исследования можно проводить в домашних условиях, и это бесценный опыт для познающего микромир.

Микроскоп позволяет погрузиться в микровселенную живой и неживой природы, пойти по следам великих ученых и исследовать наиболее интересные объекты. Кроме возможности наблюдения, микроскоп заставляет задуматься о закономерностях различных процессов, найти причины и следствия явлений природы, понять, как устроено все живое, обнаружить сходства и различия живых организмов.

Прибор позволяет выявить микроскопических виновников заболеваний человека, животных и растений. Например, зная, как выглядят галловые клещи, получится определить, заражено ли растение, и спасти его от гибели.

Имея дома микроскоп, можно следить за жизнью мельчайших живых существ, снимать с помощью видеокамеры фильмы о микромире, вести заметки своих наблюдений, экспериментировать и, возможно, стать на путь очередного научного открытия.

История создания микроскопа

Создание микроскопа имеет многовековую историю. Прибор прошел путь от простой трубки, в которую едва что-то можно было рассмотреть, до электронного устройства огромной мощности с большими увеличительными возможностями.

Поскольку ранее наукой интересовались богатые люди, заказанные ими единичные экземпляры микроскопов украшались дорогими камнями и золотом, футляры для их хранения изготавливались из слоновой кости и ценного дерева.

В настоящее время существует множество микроскопов, они находят применение в разных сферах деятельности человека: медицине, промышленности, археологии, электронике и др.

Микроскоп Захария Янссена (XVI век)

Первый микроскоп создал нидерландский мастер по изготовлению очков Захарий Янссен. Это была обычная трубка с двумя линзами на концах. Настройку изображения выполняли, выдвигая трубку (тубус). Этот простой микроскоп стал основой для создания более сложных приборов.

Микроскоп Гука (середина XVII века)

Роберт Гук собрал очень удобную модель микроскопа: тубус можно было наклонять. Чтобы получить хорошее освещение, ученый придумал специальную масляную лампу и стеклянный шар, который наполнялся водой.

Микроскоп Галилея (начало XVII века)

Галилео Галилей доработал трубу Янссена, заменив одну из выпуклых линз на вогнутую. При выдвижении тубуса этот микроскоп служил еще и телескопом. Предположительно микроскоп Галилея изготовил мастер Джузеппе Кампаньи из дерева, картона и кожи и поставил на трехногую подставку из металла.

Микроскоп Левенгука (середина XVII века)

Изобретение Левенгука представляло собой две небольшие пластины, между которыми крепилась крошечная линза, а исследуемый объект помещался на иглу. Передвигать иглу можно было с помощью специального винта. Микроскоп мог увеличить изображение в 300 раз, что было немыслимо для той поры.

Микроскоп Иоганна ван Мушенбрука (конец XVII века)

Иоганн ван Мушенбрук создал необычный и простой в использовании микроскоп. Линза и держатель крепились с помощью подвижных соединений, названных «орехами Мушенбрука». Это придавало микроскопу большую гибкость.

Микроскоп Дреббеля (XVII век)

Микроскоп Дреббеля — это позолоченная труба, которая находилась в строго вертикальном положении. Работать за таким микроскопом было не очень удобно.

Микроскоп фирмы Шевалье (XIX век)

Наука шагнула далеко вперед. Фирма Шевалье стала производить микроскопы, объектив которых состоял уже не из одной простой, а из многих специально отшлифованных ахроматических линз. Это позволяло достигать большой мощности и передавать изображение без искажений и более четко.

Электронный микроскоп (XX век)

Появляются электронные микроскопы. Ученые заменили пучок света на поток микрочастиц — электронов. Для получения изображения в электронном микроскопе используются специальные магнитные линзы, они управляют движением электронов с помощью магнитного поля.

USB-микроскоп (конец XX века)

USB-микроскоп — это небольшой цифровой прибор, который присоединяется к компьютеру через USB-порт. Вместо окуляра — маленькая веб-камера, которая посылает изображение прямо на монитор компьютера.

Как устроен микроскоп

Приобретая микроскоп, вы сможете расширить границы своих возможностей, заглянуть в микрокосмос и изучить его обитателей. Попробуйте стать исследователями окружающего мира, однако первым делом познакомьтесь с устройством микроскопа и правилами, которые необходимо соблюдать при работе с ним.

Для того чтобы правильно использовать световой микроскоп, необходимо знать его строение и понимать принцип работы.

Если посмотреть на микроскоп в целом, то это всего лишь очень сильное увеличительное стекло. Увеличивает микроскоп с помощью нескольких линз, одна часть которых находится в окуляре, а другая — в объективе. Мощность линз всегда указана на их оправе. Для того чтобы узнать мощность вашего микроскопа, необходимо перемножить цифры на объективе и окуляре. Так, если микроскоп имеет окуляр с 20-кратным увеличением и объектив 4, то он дает увеличение в 80 раз. Современные световые микроскопы могут увеличивать в 1500–3000 раз. Однако для домашней лаборатории вам вполне хватит максимального увеличения до 800 раз.

Итак, перейдем к строению микроскопа.

Окуляр находится в длинной полой трубке, которая называется тубус. При желании вы можете сменить окуляр на более мощный — он легко извлекается из тубуса.

Вы можете сами выбрать силу увеличения — для этого достаточно всего лишь покрутить диск с объективами до щелчка. Поскольку сила линз указана на оправе, только вам решать, сильнее или слабее делать увеличение.

На другом конце тубуса имеется вращающийся диск, на котором расположены объективы. У современных микроскопов их сразу несколько — два, три и более.

Под объективом находится предметный столик. Как понятно из названия, это то самое место, куда необходимо помещать исследуемые объекты. С обеих сторон микроскопа есть два больших винта, они нужны для того, чтобы приближать или отдалять предмет от объектива, — так настраивается резкость. Под предметным столиком вы найдете зеркало, очень важную часть микроскопа. С помощью зеркала свет направляется на объект, лежащий на предметном столике. Так можно настроить яркость. Все элементы микроскопа организуются в единую целостную систему благодаря штативу — крепкой металлической конструкции.

В большинство микроскопов встроена лампочка, которая направляет необходимый поток света, так что вам не надо заботиться об освещении. Кроме того, есть бинокулярные микроскопы (с двумя окулярами), которые более удобны, чем монокулярные (с одним окуляром). К тому же первые берегут наше зрение: глаза устают значительно меньше, поскольку нагрузка на них распределяется равномерно.

Есть микроскопы, в предметные столики которых встроены два маленьких винта — это позволяет плавно передвигать предметный столик с объектом изучения, а не сдвигать его руками во время работы.

Если у вас дома есть компьютер, обзаведитесь цифровым микроскопом. Это даст возможность выводить изображения на экран монитора, раскрашивать, подписывать и сохранять их. Будет здорово, если вам удастся снять видеоизображение и создать свой собственный фильм!

Правила работы

Приступая к работе с микроскопом, необходимо усвоить несколько несложных правил и подготовить некоторые приборы и вещества. Вам понадобятся предметное и покровное стекла, пипетка, пинцет, игла, а также вода, спирт, водный раствор йода (для окраски). Продаются готовые наборы для работы с микроскопом, которые вы можете использовать в своих исследованиях. В зависимости от специализации в набор могут входить и готовые микропрепараты, некоторые из них перечислены ниже.

Первое, что надо сделать, — это удобно разместить микроскоп на столе, возле окна. Будет еще лучше, если рядом вы поставите яркую настольную лампу. Поверните микроскоп ручкой штатива к себе.

Теперь нужно добиться правильного освещения. Для этого смотрите в окуляр и поверните зеркальце под предметным столиком к окну или другому источнику света так, чтобы отраженные от зеркала лучи попадали в объектив, а поле зрения в окуляре было наиболее освещенным.

Положите предмет, который собираетесь рассмотреть, на предметный столик — прямо над отверстием. Вращая винт и наблюдая сбоку за расстоянием между объективом и объектом, опустите объектив почти до соприкосновения с объектом. Готово!

Ну а теперь смотрите в окуляр и очень медленно вращайте на себя и от себя винт фокусировки, пока изображение не станет четким.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: